810 nm Wavelength light: an effective therapy for transected or contused rat spinal cord.
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES Light therapy has biomodulatory effects on central and peripheral nervous tissue. Spinal cord injury (SCI) is a severe central nervous system trauma with no effective restorative therapies. The effectiveness of light therapy on SCI caused by different types of trauma was determined. STUDY DESIGN/MATERIALS AND METHODS Two SCI models were used: a contusion model and a dorsal hemisection model. Light (810 nm) was applied transcutaneously at the lesion site immediately after injury and daily for 14 consecutive days. A laser diode with an output power of 150 mW was used for the treatment. The daily dosage at the surface of the skin overlying the lesion site was 1,589 J/cm(2) (0.3 cm(2) spot area, 2,997 seconds). Mini-ruby was used to label corticospinal tract axons, which were counted and measured from the lesion site distally. Functional recovery was assessed by footprint test for the hemisection model and open-field test for the contusion model. Rats were euthanized 3 weeks after injury. RESULTS The average length of axonal re-growth in the rats in the light treatment (LT) groups with the hemisection (6.89+/-0.96 mm) and contusion (7.04+/-0.76 mm) injuries was significantly longer than the comparable untreated control groups (3.66+/-0.26 mm, hemisection; 2.89+/-0.84 mm, contusion). The total axon number in the LT groups was significantly higher compared to the untreated groups for both injury models (P<0.05). For the hemisection model, the LT group had a statistically significant lower angle of rotation (P<0.05) compared to the controls. For contusion model, there was a statistically significant functional recovery (P<0.05) in the LT group compared to untreated control. CONCLUSIONS Light therapy applied non-invasively promotes axonal regeneration and functional recovery in acute SCI caused by different types of trauma. These results suggest that light is a promising therapy for human SCI.
منابع مشابه
The potential of light therapy for central nervous system injury and disease.
Light as a neuro-restorative and=or neuro-protective therapy for the treatment of injury and diseases of the central nervous system (CNS) is a novel concept that is rapidly gaining attention. The earliest reports on the use of light for the treatment of CNS injury were the pioneering experiments of Shimon Rochkind. Rochkind and colleagues used 780-nm wavelength laser irradiation in a number of ...
متن کاملTherapeutic Strategy for Acute Spinal Cord Contusion Injury: Cell Elimination Combined with Microsurgical Intervention
BACKGROUND No cure is available for human spinal cord injury. Cell elimination by localized radiation therapy that is timed within 2-3 weeks postinjury can facilitate repair of structure and function in transected rat spinal cord. In pilot studies in contusion spinal cord injury, a model similar to crush/fracture injury in human, we did not observe the expected beneficial effects of radiation t...
متن کاملSHOCK INDUCES A DEFICIT IN THE RECOVERY OF FUNCTION AFTER A CONTUSION INJURY: IDENTIFYING THE RELATIVE CONTRIBUTIONS OF THE BRAIN AND SPINAL CORD A Thesis by ANNE
Shock Induces a Deficit in the Recovery of Function after a Contusion Injury: Identifying the Relative Contributions of the Brain and Spinal Cord. (August 2005) Anne Caroline Bopp, B. S., Indiana State University Chair of Advisory Committee: Dr. James W. Grau Prior studies have shown that exposure to uncontrollable stimulation can have a variety of adverse consequences on plasticity. For exampl...
متن کاملLight promotes regeneration and functional recovery and alters the immune response after spinal cord injury.
BACKGROUND AND OBJECTIVES Photobiomodulation (PBM) has been proposed as a potential therapy for spinal cord injury (SCI). We aimed to demonstrate that 810 nm light can penetrate deep into the body and promote neuronal regeneration and functional recovery. STUDY DESIGN/MATERIALS AND METHODS Adult rats underwent a T9 dorsal hemisection, followed by treatment with an 810 nm, 150 mW diode laser (...
متن کاملImprovement of spinal contusion model by cotransplanting bone marrow stromal cells and induced BMSCs into oligodendrocytes-like cells.
BACKGROUND Demyelination is a common lesion in spinal cord injury, cell therapy is one of the approaches for replacing the lost oligodendrocytes. In this study, bone marrow stromal cells (BMSCs) have been transdifferentiated into oligodendrocyte-like cells (OLCs) and used in cytotherapy of contused spinal cords in rats. METHODS The BMSCs were collected from the rat long bones, and cultured an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lasers in surgery and medicine
دوره 41 1 شماره
صفحات -
تاریخ انتشار 2009